Project Manageemnt - The Design and Construction Process

Publish in



Please download to get full document.

View again

of 30
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Chapter three
    The Design and Construction Process  Design and Construction as an Integrated System Innovation and Technological Feasibility Innovation and Economic Feasibility Design Methodology Functional Design Physical Structures Geotechnical Engineering Investigation Construction Site Environment Value Engineering Construction Planning Industrialized Construction and Pre-fabrication Computer-Aided Engineering Pre-Project Planning References Footnotes  3. The Design and Construction Process 3.1 Design and Construction as an Integrated System In the planning of facilities, it is important to recognize the close relationship between design and construction. These processes can best be viewed as an integrated system. Broadly speaking, design is a process of creating the description of a new facility, usually represented by detailed plans and specifications; construction planning is a process of identifying activities and resources required to make the design a physical reality. Hence, construction is the implementation of a design envisioned by architects and engineers. In both design and construction, numerous operational tasks must be performed with a variety of precedence and other relationships among the different tasks. Several characteristics are unique to the planning of constructed facilities and should be kept in mind even at the very early stage of the project life cycle. These include the following:    Nearly every facility is custom designed and constructed, and often requires a long time to complete.    Both the design and construction of a facility must satisfy the conditions peculiar to a specific site.    Because each project is site specific, its execution is influenced by natural, social and other locational conditions such as weather, labor supply, local building codes, etc.    Since the service life of a facility is long, the anticipation of future requirements is inherently difficult.    Because of technological complexity and market demands, changes of design plans during construction are not uncommon.  In an integrated system, the planning for both design and construction can proceed almost simultaneously, examining various alternatives which are desirable from both viewpoints and thus eliminating the necessity of extensive revisions under the guise of value engineering. Furthermore, the review of designs with regard to their constructibility can be carried out as the project progresses from planning to design. For example, if the sequence of assembly of a structure and the critical loadings on the partially assembled structure during construction are carefully considered as a part of the overall structural design, the impacts of the design on construction falsework and on assembly details can be anticipated. However, if the design professionals are expected to assume such responsibilities, they must be rewarded for sharing the risks as well as for undertaking these additional tasks. Similarly, when construction contractors are expected to take over the responsibilities of engineers, such as devising a very elaborate scheme to erect an unconventional structure, they too must be rewarded accordingly. As long as the owner does not assume the responsibility for resolving this risk-reward dilemma, the concept of a truly integrated system for design and construction cannot be realized. It is interesting to note that European owners are generally more open to new technologies and to share risks with designers and contractors. In particular, they are more willing to accept responsibilities for the unforeseen subsurface conditions in geotechnical engineering. Consequently, the designers and contractors are also more willing to introduce new techniques in order to reduce the time and cost of construction. In European practice, owners typically present contractors with a conceptual design, and contractors prepare detailed designs, which are checked by the owner's engineers. Those detailed designs may be alternate designs, and specialty contractors may also prepare detailed alternate designs. Example 3-1: Responsibility for Shop Drawings    The willingness to assume responsibilities does not come easily from any party in the current litigious climate of the construction industry in the United States. On the other hand, if owner, architect, engineer, contractor and other groups that represent parts of the industry do not jointly fix the responsibilities of various tasks to appropriate parties, the standards of practice will eventually be set by court decisions. In an attempt to provide a guide to the entire spectrum of participants in a construction project, the  American Society of Civil Engineers issued a Manual of Professional Practice entitled Quality in the Constructed Project   in 1990. This manual is intended to help bring a turn around of the fragmentation of activities in the design and construction process. Shop drawings represent the assembly details for erecting a structure which should reflect the intent and rationale of the srcinal structural design. They are prepared by the construction contractor and reviewed by the design professional. However, since the responsibility for preparing shop drawings was traditionally assigned to construction contractors, design professionals took the view that the review process was advisory and assumed no responsibility for their accuracy. This justification was ruled unacceptable by a  court in connection with the walkway failure at the Hyatt Hotel in Kansas City in 1985. In preparing the ASCE Manual of Professional Practice for Quality in the Constructed Project, the responsibilities for preparation of shop drawings proved to be the most difficult to develop. [1] The reason for this situation is not difficult to fathom since the responsibilities for the task are diffused, and all parties must agree to the new responsibilities assigned to each in the recommended risk-reward relations shown in Table 3-1. Traditionally, the owner is not involved in the preparation and review of shop drawings, and perhaps is even unaware of any potential problems. In the recommended practice, the owner is required to take responsibility for providing adequate time and funding, including approval of scheduling, in order to allow the design professionals and construction contractors to perform satisfactorily. Table 3-1  Recommended Responsibility for Shop Drawings Task    Responsible Party   Owner   Design Professional   Construction Contractor  Provide adequate time and funding for shop drawing preparation and review Prime  Arrange for structural design Prime Provide structural design Prime Establish overall responsibility for connection design Prime  Accomplish connection design (by design professional) Prime  Alternatively, provide loading requirement and other information necessary for shop drawing preparation Prime  Alternatively, accomplish some or all of connection design (by constuctor with a licensed P.E.) Prime Specify shop drawing requirements and procedures Review Prime  Approve proper scheduling Prime Assisting Assisting Provide shop drawing and submit the drawing on schedule Prime Make timely reviews and approvals Prime Provide erection procedures, construction bracing, shoring, means, methods and techniques of construction, and construction safety Prime Example 3-2:Model Metro Project in Milan, Italy [2]  Under Italian law, unforeseen subsurface conditions are the owner's responsibility, not the contractor's. This is a striking difference from U.S. construction practice where changed conditions clauses and claims and the adequacy of prebid site investigations are points of contention. In effect, the Italian law means that the owner assumes those risks. But under the same  law, a contractor may elect to assume the risks in order to lower the bid price and thereby beat the competition.  According to the Technical Director of Rodio, the Milan-based contractor which is heavily involved in the grouting job for tunneling in the Model Metro project in Milan, Italy, there are two typical contractual arrangements for specialized subcontractor firms such as theirs. One is to work on a unit price basis with no responsibility for the design. The other is what he calls the nominated subcontractor or turnkey method: prequalified subcontractors offer their own designs and guarantee the price, quality, quantities, and, if they wish, the risks of unforeseen conditions.  At the beginning of the Milan metro project, the Rodio contract ratio was 50/50 unit price and turnkey. The firm convinced the metro owners that they would save money with the turnkey approach, and the ratio became 80% turnkey. What's more, in the work packages where Rodio worked with other grouting specialists, those subcontractors paid Rodio a fee to assume all risks for unforeseen conditions. Under these circumstances, it was critical that the firm should know the subsurface conditions as precisely as possible, which was a major reason why the firm developed a computerized electronic sensing program to predict stratigraphy and thus control grout mixes, pressures and, most important, quantities. 3.2 Innovation and Technological Feasibility The planning for a construction project begins with the generation of concepts for a facility which will meet market demands and owner needs. Innovative concepts in design are highly valued not for their own sake but for their contributions to reducing costs and to the improvement of aesthetics, comfort or convenience as embodied in a well-designed facility. However, the constructor as well as the design professionals must have an appreciation and full understanding of the technological complexities often associated with innovative designs in order to provide a safe and sound facility. Since these concepts are often preliminary or tentative, screening studies are carried out to determine the overall technological viability and economic attractiveness without pursuing these concepts in great detail. Because of the ambiguity of the objectives and the uncertainty of external events, screening studies call for uninhibited innovation in creating new concepts and judicious judgment in selecting the appropriate ones for further consideration. One of the most important aspects of design innovation is the necessity of communication in the design/construction partnership. In the case of bridge design, it can be illustrated by the following quotation from Lin and Gerwick concerning bridge construction: [3]  The great pioneering steel bridges of the United States were built by an open or covert alliance between designers and constructors. The turnkey approach of designer-constructor has developed and built our chemical plants,
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks